题目内容

在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,直线y=x被椭圆C截得的线段长为
4
10
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.
(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值;
(ii)求△OMN面积的最大值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程,圆锥曲线中的最值与范围问题
分析:(Ⅰ)由椭圆离心率得到a,b的关系,化简椭圆方程,和直线方程联立后求出交点的横坐标,把弦长用交点横坐标表示,则a的值可求,进一步得到b的值,则椭圆方程可求;
(Ⅱ)(i)设出A,D的坐标分别为(x1,y1)(x1y1≠0),(x2,y2),用A的坐标表示B的坐标,把AB和AD的斜率都用A的坐标表示,写出直线AD的方程,和椭圆方程联立后利用根与系数关系得到AD横纵坐标的和,求出AD中点坐标,则BD斜率可求,再写出BD所在直线方程,取y=0得到M点坐标,由两点求斜率得到AM的斜率,由两直线斜率的关系得到λ的值;
(ii)由BD方程求出N点坐标,结合(i)中求得的M的坐标得到△OMN的面积,然后结合椭圆方程利用基本不等式求最值.
解答: 解:(Ⅰ)由题意知,
c
a
=
a2-b2
a
=
3
2
,则a2=4b2
∴椭圆C的方程可化为x2+4y2=a2
将y=x代入可得x=±
5
a
5

因此
2
×
2
5
a
5
=
4
10
5
,解得a=2.
则b=1.
∴椭圆C的方程为
x2
4
+y2=1

(Ⅱ)(i)设A(x1,y1)(x1y1≠0),D(x2,y2),
则B(-x1,-y1).
∵直线AB的斜率kAB=
y1
x1

又AB⊥AD,
∴直线AD的斜率kAD=-
x1
y1

设AD方程为y=kx+m,
由题意知k≠0,m≠0.
联立
y=kx+m
x2
4
+y2=1
,得(1+4k2)x2+8kmx+4m2-4=0.
x1+x2=-
8mk
1+4k2

因此y1+y2=k(x1+x2)+2m=
2m
1+4k2

由题意可得k1=
y1+y2
x1+x2
=-
1
4k
=
y1
4x1

∴直线BD的方程为y+y1=
y1
4x1
(x+x1)

令y=0,得x=3x1,即M(3x1,0).
可得k2=-
y1
2x1

k1=-
1
2
k2
,即λ=-
1
2

因此存在常数λ=-
1
2
使得结论成立.
(ii)直线BD方程为y+y1=
y1
4x1
(x+x1)

令x=0,得y=-
3
4
y1
,即N(0,-
3
4
y1
).
由(i)知M(3x1,0),
可得△OMN的面积为S=
1
2
×3×|x1
3
4
|y1|
=
9
4
|
x1
2
||y1|≤
9
8
(
x12
4
+y12)=
9
8

当且仅当
|x1|
2
=|y1|=
2
2
时等号成立.
∴△OMN面积的最大值为
9
8
点评:本题考查椭圆方程的求法,主要考查了直线与椭圆的位置关系的应用,直线与曲线联立,根据方程的根与系数的关系解题,是处理这类问题的最为常用的方法,但圆锥曲线的特点是计算量比较大,要求考试具备较强的运算推理的能力,是压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网