题目内容

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,连接椭圆的四个顶点得到的菱形面积为4.
(1)求椭圆的方程;
(2)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),|AB|=$\frac{{4\sqrt{2}}}{5}$,求直线l的倾斜角.

分析 (1)由题意可知:根据椭圆的离心率及菱形的面积公式,即可求得a和b的值,求得椭圆的方程;
(2)设直线l方程,代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得丨AB丨,即可求得k的值,求得直线l的倾斜角.

解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{2}$,则a2=4b2,a=2b,①
由$\frac{1}{2}$×2a×2b=4,即ab=2,②
由①②解得:a=2,b=1,
∴椭圆的方程$\frac{x^2}{4}+{y^2}=1$;
(2)由题知,A(-2,0),直线l斜率存在,故设l:y=k(x+2),
则$\left\{\begin{array}{l}y=k({x+2})\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,整理得:(1+4k2)x2+16k2x+(16k2-4)=0,△>0,
由$-2{x_1}=\frac{{16{k^2}-4}}{{1+4{k^2}}}$,得${x_1}=\frac{{2-8{k^2}}}{{1+4{k^2}}}$,${y_1}=\frac{4k}{{1+4{k^2}}}$,
∴$|{AB}|=\sqrt{{{({-2-{x_1}})}^2}+{{({0-{y_1}})}^2}}=\frac{{4\sqrt{1+{k^2}}}}{{1+4{k^2}}}$,
∴$\frac{{4\sqrt{1+{k^2}}}}{{1+4{k^2}}}=\frac{{4\sqrt{2}}}{5}$,∴k=±1.
故直线的倾斜角为$\frac{π}{4}$或$\frac{3π}{4}$.

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查两点之间的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网