题目内容
已知函数,,
(1)求实数a的值;
(2)求函数在的值域。
已知椭圆上有一点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足,设,且,则该椭圆的离心率e的取值范围为( )
A. B.
C. D.
设正实数 满足,则当 取得最大值时, 的最大值为 ( )
A.0 B.1 C. D.3
已知函数,则其导函数的图象大致是( )
已知直线被圆截得的弦长恰与椭圆的短轴长相等,椭圆的离心率.
(1)求椭圆的方程;
(2)已知过点的动直线交椭圆于两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标,若不存在,请说明理由.
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.
(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.
在的展开式中含的项的系数是 .
已知数列满足,(),则的最小值为 .
给定下列四个命题:其中为真命题的是 .(填上正确命题的序号)
①“”是“”的充分不必要条件;
②若“”为真,则“”为真;
③已知,则“”是“”的充分不必要条件;
④“若,则”的逆否命题为真命题.