ÌâÄ¿ÄÚÈÝ
8£®Èç¹ûÊýÁÐA£ºa1£¬a2£¬¡£¬am£¨m¡ÊZ£¬ÇÒm¡Ý3£©£¬Âú×㣺¢Ùai¡ÊZ£¬$-\frac{m}{2}¡Ü{a_i}¡Ü\frac{m}{2}$£¨i=1£¬2£¬¡£¬m£©£»¢Úa1+a2+¡+am=1£¬ÄÇô³ÆÊýÁÐAΪ¡°¦¸¡±ÊýÁУ®£¨¢ñ£©ÒÑÖªÊýÁÐM£º-2£¬1£¬3£¬-1£»ÊýÁÐN£º0£¬1£¬0£¬-1£¬1£®ÊÔÅжÏÊýÁÐM£¬NÊÇ·ñΪ¡°¦¸¡±ÊýÁУ»
£¨¢ò£©ÊÇ·ñ´æÔÚÒ»¸öµÈ²îÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Èç¹ûÊýÁÐAÊÇ¡°¦¸¡±ÊýÁУ¬ÇóÖ¤£ºÊýÁÐAÖбض¨´æÔÚÈô¸ÉÏîÖ®ºÍΪ0£®
·ÖÎö £¨¢ñ£©¸ù¾Ý¶¨ÒåÖ±½ÓÅжϼ´¿ÉµÃ½â£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¬ÓÉa1+a2+¡+am=1£¬µÃa1+am=$\frac{2}{m}$∉Z£¬Óëai¡ÊZì¶Ü£¬´Ó¶ø¿ÉÖ¤²»´æÔڵȲîÊýÁÐΪ¡°¦¸¡±ÊýÁУ®
£¨¢ó£©½«ÊýÁÐA°´ÒÔÏ·½·¨ÖØÐÂÅÅÁУºÉèSnÎªÖØÐÂÅÅÁкóËùµÃÊýÁеÄǰnÏîºÍ£¨n¡ÊZÇÒ1¡Ün¡Üm£©£¬ÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚÒ»ÏÔòÂú×ã-$\frac{m}{2}$+1¡ÜS1¡Ü$\frac{m}{2}$£¬È»ºóÀûÓ÷´Ö¤·¨£¬Ö¤Ã÷¼´¿É£®
½â´ð £¨±¾Ð¡Ìâ¹²13·Ö£©
½â£º£¨¢ñ£©ÊýÁÐM²»ÊÇ¡°¦¸¡±ÊýÁУ»ÊýÁÐNÊÇ¡°¦¸¡±ÊýÁУ® ¡£¨2·Ö£©
£¨¢ò£©²»´æÔÚÒ»¸öµÈ²îÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ®
Ö¤Ã÷£º¼ÙÉè´æÔڵȲîÊýÁÐÊÇ¡°¦¸¡±ÊýÁУ¬
ÔòÓÉa1+a2+¡+am=1 µÃa1+am=$\frac{2}{m}$∉Z£¬Óëai¡ÊZì¶Ü£¬
ËùÒÔ¼ÙÉè²»³ÉÁ¢£¬¼´²»´æÔڵȲîÊýÁÐΪ¡°¦¸¡±ÊýÁУ® ¡£¨7·Ö£©
£¨¢ó£©½«ÊýÁÐA°´ÒÔÏ·½·¨ÖØÐÂÅÅÁУº
ÉèSnÎªÖØÐÂÅÅÁкóËùµÃÊýÁеÄǰnÏîºÍ£¨n¡ÊZÇÒ1¡Ün¡Üm£©£¬
ÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚÒ»ÏÔòÂú×ã-$\frac{m}{2}$+1¡ÜS1¡Ü$\frac{m}{2}$£¬
¼ÙÉèµ±2¡Ün¡Ümʱ£¬$-\frac{m}{2}+1¡Ü{S_{n-1}}¡Ü\frac{m}{2}$
ÈôSn-1=0£¬ÔòÈÎÈ¡´óÓÚ0µÄÒ»Ïî×÷ΪµÚnÏ¿ÉÒÔ±£Ö¤-$\frac{m}{2}$+1¡ÜSn¡Ü$\frac{m}{2}$£¬
ÈôSn-1¡Ù0£¬ÔòʣϵÄÏî±ØÓÐ0»òÓëSn-1ÒìºÅµÄÒ»Ï·ñÔò×ܺͲ»ÊÇ1£¬
ËùÒÔÈ¡0»òÓëSn-1ÒìºÅµÄÒ»Ïî×÷ΪµÚnÏ¿ÉÒÔ±£Ö¤-$\frac{m}{2}$+1¡ÜSn¡Ü$\frac{m}{2}$£®
Èç¹û°´ÉÏÊöÅÅÁкó´æÔÚSn=0³ÉÁ¢£¬ÄÇôÃüÌâµÃÖ¤£»
·ñÔòS1£¬S2£¬¡£¬SmÕâm¸öÕûÊýÖ»ÄÜÈ¡ÖµÇø¼ä[-$\frac{m}{2}$+1£¬$\frac{m}{2}$]ÄڵķÇ0ÕûÊý£¬
ÒòÎªÇø¼ä[-$\frac{m}{2}$+1£¬$\frac{m}{2}$]ÄڵķÇ0ÕûÊýÖÁ¶àm-1¸ö£¬ËùÒԱشæÔÚSi=Sj£¨1¡Üi£¼j¡Üm£©£¬
ÄÇô´ÓµÚi+1Ïîµ½µÚjÏîÖ®ºÍΪSi-Sj=0£¬ÃüÌâµÃÖ¤£®
×ÛÉÏËùÊö£¬ÊýÁÐAÖбشæÔÚÈô¸ÉÏîÖ®ºÍΪ0£® ¡£¨13·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËж¨ÒåºÍÊýÁеÄÓ¦Ó㬽â´ðж¨ÒåµÄÊÔÌâµÄ¹Ø¼üÊǰÑÌâÄ¿Öе͍Òåת»¯ÒѾѧ¹ýµÄ֪ʶ½øÐнâ¾ö£¬ÊôÓÚÖеµÌ⣮
| A£® | 6cm3 | B£® | 12cm3 | C£® | 18cm3 | D£® | 36cm3 |