题目内容

若θ是三角形的内角,且函数y=x2•cosθ-4x•sinθ+6,对于任意实数x,y均取正值,那么θ的取值范围是( )
A.
B.
C.
D.
【答案】分析:首先讨论可得cosθ≠0,再根据二次函数在R上恒成立,根据开口方向和判别式建立不等式关系,利用三角不等式的解法解之即可.
解答:解:当cosθ=0时,函数y=-4x+6不可能对一切实数x都有f(x)>0;
故cosθ≠0,
又∵函数f(x)=x2cosθ-4xsinθ+6对一切实数x都有f(x)>0,

解得
故选A.
点评:本题主要考查了函数恒成立问题,以及三角不等式的求解,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网