ÌâÄ¿ÄÚÈÝ
18£®ÏÂÁÐÃüÌâÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©| A£® | ?¦Õ¡ÊR£¬º¯Êýf£¨x£©=sin£¨2x+¦Õ£©¶¼²»ÊÇżº¯Êý | |
| B£® | ?¦Á£¬¦Â¡ÊR£¬Ê¹cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â | |
| C£® | ÏòÁ¿$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨-1£¬0£©£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ2 | |
| D£® | ¡°|x|¡Ü1¡±ÊÇ¡°x¡Ü1¡±µÄ¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ |
·ÖÎö ¾Ù³ö·´Àý¦Õ=$\frac{¦Ð}{2}$£¬¿ÉÅжÏA£»¾Ù³öÕýÀý¦Á=$\frac{¦Ð}{3}$£¬¦Â=-$\frac{¦Ð}{3}$£¬¿ÉÅжÏB£»Çó³öÏòÁ¿µÄͶӰ£¬¿ÉÅжÏC£»¸ù¾Ý³äÒªÌõ¼þµÄ¶¨Ò壬¿ÉÅжÏD£®
½â´ð ½â£ºµ±¦Õ=$\frac{¦Ð}{2}$ʱ£¬º¯Êýf£¨x£©=sin£¨2x+¦Õ£©=cos2xÊÇżº¯Êý£¬¹ÊAΪ¼ÙÃüÌ⣻
?¦Á=$\frac{¦Ð}{3}$£¬¦Â=-$\frac{¦Ð}{3}$¡ÊR£¬Ê¹cos£¨¦Á+¦Â£©=cos¦Á+cos¦Â=1£¬¹ÊBÎªÕæÃüÌ⣻
ÏòÁ¿$\overrightarrow{a}$=£¨2£¬1£©£¬$\overrightarrow{b}$=£¨-1£¬0£©£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ-2£¬¹ÊCΪ¼ÙÃüÌ⣻
¡°|x|¡Ü1¡±?¡°-1¡Üx¡Ü1¡±ÊÇ¡°x¡Ü1¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬¹ÊDΪ¼ÙÃüÌ⣬
¹ÊÑ¡£ºB
µãÆÀ ±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦ÓÃÎªÔØÌ壬¿¼²éÆæÊýµÄÆæÅ¼ÐÔ£¬ÌسÆÃüÌ⣬ÏòÁ¿µÄͶӰ£¬³äÒªÌõ¼þµÈ֪ʶµã£¬ÄѶÈÖеµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®ÒÑÖªPΪ˫ÇúÏß$\frac{{y}^{2}}{4}$-x2=1ÉÏÈÎÒ»µã£¬¹ýPµãÏòË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·Ö±ð×÷´¹Ïߣ¬´¹×ã·Ö±ðΪA£¬B£¬Ôò|PA|•|PB|µÄֵΪ£¨¡¡¡¡£©
| A£® | 4 | B£® | 5 | C£® | $\frac{4}{5}$ | D£® | ÓëµãPµÄλÖÃÓÐ¹Ø |
10£®ÒÑÖªÅ×ÎïÏßx2=2yµÄ½¹µãÓëÍÖÔ²$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1µÄÒ»¸ö½¹µãÖØºÏ£¬Ôòm=£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | $\frac{9}{4}$ |
7£®Í¬Ê±¾ßÓÐÐÔÖÊ£º¢ÙͼÏóµÄÏàÁÚÁ½Ìõ¶Ô³ÆÖá¼äµÄ¾àÀëÊÇ$\frac{¦Ð}{2}$£»¢ÚÔÚ[-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ÉÏÊÇÔöº¯ÊýµÄÒ»¸öº¯ÊýΪ£¨¡¡¡¡£©
| A£® | y=sin£¨$\frac{x}{2}$+$\frac{¦Ð}{6}$£© | B£® | y=cos£¨2x+$\frac{¦Ð}{3}$£© | C£® | y=sin£¨2x-$\frac{¦Ð}{6}$£© | D£® | y=cos£¨$\frac{x}{2}$-$\frac{¦Ð}{6}$£© |
2£®ÔÚÀⳤΪ2µÄÕý·½ÌåABCD-A1B1C1D1ÖУ¬EΪA1B1µÄÖе㣬ÔòÒìÃæÖ±ÏßD1EºÍBC1¼äµÄ¾àÀëÊÇ£¨¡¡¡¡£©
| A£® | $\frac{2\sqrt{6}}{3}$ | B£® | $\frac{2}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{\sqrt{6}}{3}$ |