题目内容
3.| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由已知三视图得到几何体是直径为a的球和底面半径为a,高为4的半个圆柱的组合体,根据表面积就是a.
解答 解:由已知三视图得到几何体是直径为a的球和底面半径为a,高为4的半个圆柱的组合体,所以表面积为4$π×(\frac{a}{2})^{2}$+2a×4$+\frac{1}{2}×2aπ×4$+$π×{a}^{2}×\frac{1}{2}$×2=16+16π,解得a=2;
故选B.
点评 本题考查了由几何体的三视图得到几何体的表面积;关键是正确还原几何体的形状.
练习册系列答案
相关题目
9.若a>b>1,0<c<1,则( )
| A. | ac<bc | B. | abc<bac | C. | logac<logbc | D. | alogbc<blogac |
13.
2016年入冬以来,各地雾霾天气频发,PM2.5频频爆表(PM2.5是指直径小于或等于2.5微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与PM2.5的浓度是否相关,某市现采集到周一到周五某一时间段车流量与PM2.5的数据如表:
(1)请根据上述数据,在下面给出的坐标系中画出散点图
(2)试判断x与y是否具有线性关系,若有请求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,若没有,请说明理由
参考公式:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
| 时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
| 车流量x(万辆) | 50 | 51 | 54 | 57 | 58 |
| PM2.5的浓度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
(2)试判断x与y是否具有线性关系,若有请求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,若没有,请说明理由
参考公式:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.