题目内容

5.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=(2,2-tanx),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)求$\frac{\sqrt{2}sin(x-\frac{π}{4})}{sinx+3cosx}$的值;
(2)设△ABC的三内角A,B,C所对的边分别为a,b,c,且cosA=tan(x+$\frac{π}{4}$),△ABC的面积为4$\sqrt{2}$,csinB=4sinC,求a.

分析 (1)令$\overrightarrow{m}•\overrightarrow{n}=0$解出tanx,将$\frac{\sqrt{2}sin(x-\frac{π}{4})}{sinx+3cosx}$分子展开然后弦化切即可计算出结果;
(2)求出cosA,sinA,根据面积公式得到bc,利用正弦定理化简csinB=4sinC即可得到b,利用余弦定理计算a.

解答 解:(1)∵$\overrightarrow{m}⊥\overrightarrow{n}$,
∴$\overrightarrow{m}•\overrightarrow{n}$=0,即2sinx+2cosx-cosxtanx=0,
∴sinx+2cosx=0,∴tanx=-2.
∴$\frac{\sqrt{2}sin(x-\frac{π}{4})}{sinx+3cosx}$=$\frac{sinx-cosx}{sinx+3cosx}$=$\frac{tanx-1}{tanx+3}$=-3.
(2)cosA=$\frac{tanx+tan\frac{π}{4}}{1-tanxtan\frac{π}{4}}$=-$\frac{1}{3}$.∴sinA=$\frac{2\sqrt{2}}{3}$.
∵S△ABC=$\frac{1}{2}bcsinA$=4$\sqrt{2}$,∴bc=12.
∵csinB=4sinC,∴$\frac{sinB}{sinC}=\frac{4}{c}$,又由正弦定理得$\frac{sinB}{sinC}=\frac{b}{c}$,
∴b=4,c=3.
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{16+9+8}$=$\sqrt{33}$.

点评 本题考查了平面向量的数量级运算,三角函数的恒等变换,正余弦定理解三角形,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网