题目内容
已知x,y满足
,则z=x-y的最大值是 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:根据二元一次不等式组表示平面区域,画出不等式组表示的平面区域,由z=x-y得y=x-z,利用平移求出z最大值即可.
解答:
解:不等式对应的平面区域如图:(阴影部分).
由z=x-y得y=x-z,平移直线y=x-z,
由平移可知当直线y=x-z,经过点B时,
直线y=x-z的截距最小,此时z取得最大值,
由
,得
,
即B(3,-3)代入z=x-y得z=3-(-3)=6,
即z=x-y的最大值是6,
故答案为:6.
由z=x-y得y=x-z,平移直线y=x-z,
由平移可知当直线y=x-z,经过点B时,
直线y=x-z的截距最小,此时z取得最大值,
由
|
|
即B(3,-3)代入z=x-y得z=3-(-3)=6,
即z=x-y的最大值是6,
故答案为:6.
点评:本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.
练习册系列答案
相关题目