题目内容
10.设f(x),g(x)是定义域为R的恒大于零的可导函数,且f'(x)•g(x)-f(x)•g′(x)<0,则当a<x<b时,有( )| A. | f(x)•g(x)>f(b)•g(b) | B. | f(x)•g(a)>f(a)•g(x) | C. | f(x)•g(b)>f(b)•g(x) | D. | f(x)•g(x)>f(a)•g(a) |
分析 令F(x)=$\frac{f(x)}{g(x)}$,可得F′(x)=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$<0,x∈R.即可判断出结论.
解答 解:令F(x)=$\frac{f(x)}{g(x)}$,则F′(x)=$\frac{{f}^{′}(x)g(x)-f(x){g}^{′}(x)}{{g}^{2}(x)}$<0,x∈R.
∴函数F(x)在(a,b)上单调递减.
∴F(a)>F(b),即$\frac{f(x)}{g(x)}$>$\frac{f(b)}{g(b)}$,化为:f(x)g(b)>f(b)g(x).
故选:A.
点评 本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目
20.如果$|x|≤\frac{π}{4}$,那么函数f(x)=-cos2x+sinx的值域是( )
| A. | $[\frac{{1-\sqrt{2}}}{2},\frac{{\sqrt{2}-1}}{2}]$ | B. | $[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$ | C. | $[-\frac{5}{4},\frac{{\sqrt{2}+1}}{2}]$ | D. | $[-\frac{5}{4},\frac{{\sqrt{2}-1}}{2}]$ |
1.设实数x,y满足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y≥0\\ y>0.\end{array}\right.$则x-2y的最大值为( )
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
15.若双曲线$\frac{x^2}{4}-\frac{y^2}{b}=1(b>0)$的渐近线方程为$y=±\frac{1}{2}x$,则b等于( )
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{{\sqrt{5}}}{2}$ |
19.
如图,空间四边形OABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,点M在线段OA上,且OM=2MA,点N为BC的中点,则$\overrightarrow{MN}$=( )
| A. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\frac{2}{3}\overrightarrow a$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$ | D. | $\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$ |