题目内容

用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(    )

A.(k+1)2+2k2                              B.(k+1)2+k2

C.(k+1)2                                  D.(k+1)[2(k+1)2+1]

解析:n=k时,左式=12+22+…+(k-1)2+k2+(k-1)2+…+22+12;

n=k+1时,左式=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12.

∴增加的式子为(k+1)2+k2.

答案:B

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网