题目内容
(1)试用向量
| AB |
| AC |
| AD |
(2)求中线AD的长;
(3)求
| BE |
| AD |
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:(1)根据题意,利用向量的加法法则,得出
;
(2)求出|
|2的值,即得|
|的长;
(3)由
、
,利用平面向量的数量积求出夹角θ的余弦值.
| AD |
(2)求出|
| AD |
| AD |
(3)由
| BE |
| AD |
解答:
解:(1)根据题意,得
=
(
+
);…(2分)
(2)∵|
|2=
2=
(
+
)2
=
(
2+2
•
+
2)…(4分)
=
(32+2×3×6×cos60°+62)
=
,…(5分)
∴|
|=
;…(6分)
(3)∵
=
+
=-
+
=-
+
+
=-
+
,…(7分)
∴|
|2=(-
+
)2
=
2-2×
×
•
+
2
=
-
×3×6×
+
=
=
,…(8分)
∴|
|=
;…(9分)
∴cosθ=
=
=
=
=
=-
.…(10分)
| AD |
| 1 |
| 2 |
| AB |
| AC |
(2)∵|
| AD |
| AD |
| 1 |
| 4 |
| AB |
| AC |
=
| 1 |
| 4 |
| AB |
| AB |
| AC |
| AC |
=
| 1 |
| 4 |
=
| 63 |
| 4 |
∴|
| AD |
3
| ||
| 2 |
(3)∵
| BE |
| BA |
| AE |
| AB |
| 1 |
| 2 |
| AD |
=-
| AB |
| 1 |
| 4 |
| AB |
| 1 |
| 4 |
| AC |
=-
| 3 |
| 4 |
| AB |
| 1 |
| 4 |
| AC |
∴|
| BE |
| 3 |
| 4 |
| AB |
| 1 |
| 4 |
| AC |
=
| 9 |
| 16 |
| AB |
| 3 |
| 4 |
| 1 |
| 4 |
| AB |
| AC |
| 1 |
| 16 |
| AC |
=
| 81 |
| 16 |
| 3 |
| 8 |
| 1 |
| 2 |
| 36 |
| 16 |
=
| 81-54+36 |
| 16 |
| 63 |
| 16 |
∴|
| BE |
3
| ||
| 4 |
∴cosθ=
| ||||
|
|
=
(-
| ||||||||||||||
|
=
| ||||||||||
|
=
| ||||
|
=
| -9 |
| 9×7 |
| 1 |
| 7 |
点评:本题考查了平面向量的应用问题,解题时应结合图形,利用平面向量的线性运算法则和平面向量的数量积,求模长与夹角,是计算题.
练习册系列答案
相关题目
当0<x<1时,f(x)=
,则下列大小关系正确的是( )
| x |
| lgx |
| A、f2(x)<f(x2)<f(x) |
| B、f(x2)<f2(x)<f(x) |
| C、f(x)<f(x2)<f2(x) |
| D、f(x2)<f(x)<f2(x) |