题目内容
3.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人)| 几何题 | 代数题 | 总计 | |
| 男同学 | 22 | 8 | 30 |
| 女同学 | 8 | 12 | 20 |
| 总计 | 30 | 20 | 50 |
(Ⅱ) 经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式附表及公式
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (Ⅰ)根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到结论;
(Ⅱ)利用面积比,求出乙比甲先解答完的概率.
解答 解:(Ⅰ)由表中数据得K2的观测值K2=$\frac{50×(22×12-8×8)^{2}}{30×20×30×20}$≈5.556>5.024,
所以根据统计有97.5%的把握认为视觉和空间能力与性别有关;
(Ⅱ)设甲、乙解答一道几何题的时间分别为x、y分钟,则基本事件满足的区域为$\left\{\begin{array}{l}{5≤x≤7}\\{6≤y≤8}\end{array}\right.$(如图所示)![]()
设事件A为“乙比甲先做完此道题”则满足的区域为x>y,
∴由几何概型P(A)=$\frac{\frac{1}{2}×1×1}{2×2}$=$\frac{1}{8}$即乙比甲先解答完的概率为$\frac{1}{8}$.
点评 本题考查几何概型、独立性检验的应用,考查根据列联表做出观测值,根据所给的临界值表进行比较,本题是一个综合题.
练习册系列答案
相关题目
13.函数f(x)=$\frac{1}{\sqrt{a{x}^{2}-4ax+3}}$的值域为(0,+∞)则a的取值范围是( )
| A. | (0,$\frac{3}{4}$) | B. | [0,$\frac{3}{4}$) | C. | [$\frac{3}{4}$,+∞) | D. | [$\frac{3}{4}$,+∞)∪(-∞,0] |
18.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:
如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求?
| 机床甲 | 10 | 9.8 | 10 | 10.2 |
| 机床乙 | 10.1 | 10 | 9.9 | 10 |
8.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$,满足对任意x1,x2(x1≠x2),都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为( )
| A. | (0,$\frac{1}{4}$] | B. | (0,1) | C. | [$\frac{1}{4}$,1) | D. | (0,$\frac{3}{4}$] |
15.设函数f(x)=2x+$\frac{1}{x}$-1(x<0),则f(x)( )
| A. | 有最小值$2\sqrt{2}-1$ | B. | 有最小值$-(2\sqrt{2}+1)$ | C. | 有最大值$2\sqrt{2}-1$ | D. | 有最大值$-(2\sqrt{2}+1)$ |