题目内容
方程(cos1)|x|=a+1有两个根,则a的范围为 .
考点:指数函数的图像与性质
专题:函数的性质及应用
分析:令f(x)=(cos1)|x|,可在同一坐标系中作出y=a+1与偶函数令f(x)=(cos1)|x|的图象,结合题意可求得a的范围.
解答:
解:令f(x)=(cos1)|x|,在同一坐标系中作出y=a+1与偶函数令f(x)=(cos1)|x|的图象,
因为方程(cos1)|x|=a+1有两个根,
所以0<a+1<1,
解得:-1<a<0,
故答案为:-1<a<0.
因为方程(cos1)|x|=a+1有两个根,
所以0<a+1<1,
解得:-1<a<0,
故答案为:-1<a<0.
点评:本题考查指数函数的图象与性质,考查作图与应用能力,属于中档题.
练习册系列答案
相关题目
如图表示的程序框图输出的结果是( )

| A、56 | B、336 |
| C、1680 | D、6720 |
已知tan(α-β)=
,tan(β+
)=
,则tan(α+
)=( )
| 1 |
| 3 |
| π |
| 4 |
| 1 |
| 4 |
| π |
| 4 |
A、
| ||
B、
| ||
C、
| ||
D、
|