题目内容

3.设函数y=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<e}\\{alnx,x≥e}\end{array}\right.$的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是(0,$\frac{1}{e+1}$].

分析 曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P(t,f(t))(t>0),则Q(-t,t3+t2),运用向量垂直的条件:数量积为0,构造函数h(x)=(x+1)lnx(x≥e),运用导数判断单调性,求得最值,即可得到a的范围.

解答 解:假设曲线y=f(x)上存在两点P、Q满足题设要求,
则点P、Q只能在y轴两侧.
不妨设P(t,f(t))(t>0),
则Q(-t,t3+t2),
∵△POQ是以O为直角顶点的直角三角形,
∴$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,
即-t2+f(t)(t3+t2)=0(*)
若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若0<t<e,则f(t)=-t3+t2代入(*)式得:-t2+(-t3+t2)(t3+t2)=0
即t4-t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,
代入(*)式得:-t2+(alnt)(t3+t2)=0,
即$\frac{1}{a}$=(t+1)lnt(**)
令h(x)=(x+1)lnx(x≥e),
则h′(x)=lnx+1+$\frac{1}{x}$>0,
∴h(x)在[e,+∞)上单调递增,
∵t≥e∴h(t)≥h(e)=e+1,
∴h(t)的取值范围是[e+1,+∞).
∴对于0<a≤$\frac{1}{e+1}$,方程(**)总有解,即方程(*)总有解.
故答案为:(0,$\frac{1}{e+1}$].

点评 本题考查分段函数的运用,注意向量垂直条件的运用和中点坐标公式,考查构造法和函数的单调性运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网