题目内容
20.已知${(1-2x)^7}={a_o}+{a_1}x+{a_2}{x^2}+…+{a_7}{x^7}}$,那么a1+a2+…+a7等于-2.分析 令二项式中的x=1,又由于所求之和不含a0,令x=0,可求出a0的值,代入即求答案.
解答 解:令x=1代入二项式(1-2x)7=a0+a1x+a2x2+…+a7x7得,(1-2)7=a0+a1+…+a7=-1,
令x=0得a0=1,∴1+a1+a2+…+a7=-1,
∴a1+a2+…+a7=-2,
故答案为:-2.
点评 本题主要考查二项式定理的应用,一般再求解有二项式关系数的和等问题时通常会将二项式展开式中的未知数x赋值为1或0或者是-1进行求解.本题属于基础题型.
练习册系列答案
相关题目
8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a>0,b>0)的左,右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=5|PF2|,则此双曲线的离心率e的最大值为( )
| A. | $\frac{4}{3}$ | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{3}$ |
15.下列说法中,正确的是( )
| A. | 第二象限的角是钝角 | B. | 第三象限的角必大于第二象限的角 | ||
| C. | -800°是第二象限角 | D. | 984°40′,264°40′是终边相同的角 |
5.命题“?x>0,都有x2-x+3≤0”的否定是( )
| A. | ?x>0,使得x2-x+3≤0 | B. | ?x>0,使得x2-x+3>0 | ||
| C. | ?x>0,都有x2-x+3>0 | D. | ?x≤0,都有x2-x+3>0 |
9.已知等差数列{an}的前n项和为sn,若a2=4,a5=7,则$s_{10}^{\;}$=( )
| A. | 12 | B. | 60 | C. | 75 | D. | 120 |