题目内容

设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).
(Ⅰ)证明数列{an+3}为等比数列;    
(Ⅱ)记bn=
6
n(6×2n-Sn)
,求{bn}的前n项和Tn
考点:数列的求和,等比关系的确定
专题:计算题,等差数列与等比数列
分析:(Ⅰ)易求a1=3,由Sn+1=2an+1-3(n+1),Sn=2an-3n,两式相减,可得an+1=2an+3,进而可化为an+1+3=2(an+3);
(Ⅱ)由(Ⅰ)可求an,分组求和可得Sn,表示出bn,利用裂项相消法可求得Tn
解答: 解:(Ⅰ)令n=1,S1=2a1-3,∴a1=3,
由Sn+1=2an+1-3(n+1),Sn=2an-3n,
两式相减,得an+1=2an+1-2an-3,
则an+1=2an+3,an+1+3=2(an+3),
an+1+3
an+3
=2

∴{an+3}为公比为2的等比数列;
(Ⅱ)由(Ⅰ)知,an+3=(a1+3)•2n-1=6•2n-1
an=6•2n-1-3Sn=
6(1-2n)
1-2
-3n=6•2n-3n-6

bn=
6
n(6×2n-Sn)
=
6
n(3n+6)
=
2
n(n+2)
=
1
n
-
1
n+2

Tn=(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n
-
1
n+2
)=1+
1
2
-
1
n+1
-
1
n+2
=
3
2
-
1
n+1
-
1
n+2
=
3n2+5n
2n2+6n+4
点评:本题考查由递推式求数列通项、等比数列的求和公式等知识,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握,弄清裂项规律是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网