题目内容
设数列{an}的前n项和为Sn,且Sn=2an-3n,(n∈N*).
(Ⅰ)证明数列{an+3}为等比数列;
(Ⅱ)记bn=
,求{bn}的前n项和Tn.
(Ⅰ)证明数列{an+3}为等比数列;
(Ⅱ)记bn=
| 6 |
| n(6×2n-Sn) |
考点:数列的求和,等比关系的确定
专题:计算题,等差数列与等比数列
分析:(Ⅰ)易求a1=3,由Sn+1=2an+1-3(n+1),Sn=2an-3n,两式相减,可得an+1=2an+3,进而可化为an+1+3=2(an+3);
(Ⅱ)由(Ⅰ)可求an,分组求和可得Sn,表示出bn,利用裂项相消法可求得Tn.
(Ⅱ)由(Ⅰ)可求an,分组求和可得Sn,表示出bn,利用裂项相消法可求得Tn.
解答:
解:(Ⅰ)令n=1,S1=2a1-3,∴a1=3,
由Sn+1=2an+1-3(n+1),Sn=2an-3n,
两式相减,得an+1=2an+1-2an-3,
则an+1=2an+3,an+1+3=2(an+3),
=2,
∴{an+3}为公比为2的等比数列;
(Ⅱ)由(Ⅰ)知,an+3=(a1+3)•2n-1=6•2n-1,
∴an=6•2n-1-3,Sn=
-3n=6•2n-3n-6.
∴bn=
=
=
=
-
,
∴Tn=(1-
)+(
-
)+(
-
)+…+(
-
)=1+
-
-
=
-
-
=
.
由Sn+1=2an+1-3(n+1),Sn=2an-3n,
两式相减,得an+1=2an+1-2an-3,
则an+1=2an+3,an+1+3=2(an+3),
| an+1+3 |
| an+3 |
∴{an+3}为公比为2的等比数列;
(Ⅱ)由(Ⅰ)知,an+3=(a1+3)•2n-1=6•2n-1,
∴an=6•2n-1-3,Sn=
| 6(1-2n) |
| 1-2 |
∴bn=
| 6 |
| n(6×2n-Sn) |
| 6 |
| n(3n+6) |
| 2 |
| n(n+2) |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3n2+5n |
| 2n2+6n+4 |
点评:本题考查由递推式求数列通项、等比数列的求和公式等知识,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握,弄清裂项规律是解题关键.
练习册系列答案
相关题目
已知f(x)=x2+6x,则f(x-1)的表达式是( )
| A、x2+4x-5 |
| B、x2+8x+7 |
| C、x2+2x-3 |
| D、x2+6x-10 |