题目内容
2.实数x,y满足$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{2x+y-7≤0}\end{array}}\right.$,若x-2y≥m恒成立,则实数m的取值范围是( )| A. | (-∞,-3] | B. | (-∞,-4] | C. | (-∞,6] | D. | [0,6] |
分析 首先画出可行域,由4x-y≥m恒成立,即求4x-y的最小值,设z=4x-y,利用其几何意义求最小值.
解答
解:x,y满足的平面区域如图:设z=x-2y,则y=$\frac{1}{2}$x-$\frac{1}{2}$z
当经过图中的A时z最小,由$\left\{\begin{array}{l}{x-y+1=0}\\{2x+y-7=0}\end{array}\right.$得到A(2,3),
所以z的最小值为2-2×3=-4;
所以实数m的取值范围是(-∞,-4];
故选:B.
点评 本题考查了简单线性规划问题;正确画出可行域,将恒成立问题求参数范围问题,转化为求4x-y的最小值.
练习册系列答案
相关题目
10.已知圆M:(x-3)2+(y-3)2=4,E,F分别为圆内接正△ABC的边AB,BC的中点,当△ABC绕圆心M转动时,则$\overrightarrow{ME}•\overrightarrow{OF}$(O为坐标原点)的取值范围是( )
| A. | $[{-\frac{1}{2}-6\sqrt{2},-\frac{1}{2}+6\sqrt{2}}]$ | B. | [-6,6] | C. | $[{-\frac{1}{2}-3\sqrt{2},-\frac{1}{2}+3\sqrt{2}}]$ | D. | [-4,4] |
12.命题“?x0∈∁RQ,x03∈Q”的否定是( )
| A. | ?x0∉∁RQ,x03∈Q | B. | ?x0∈∁RQ,x03∈Q | C. | ?x∉∁RQ,x3∈Q | D. | ?x∈∁RQ,x3∉Q |