题目内容
10.已知圆M:(x-3)2+(y-3)2=4,E,F分别为圆内接正△ABC的边AB,BC的中点,当△ABC绕圆心M转动时,则$\overrightarrow{ME}•\overrightarrow{OF}$(O为坐标原点)的取值范围是( )| A. | $[{-\frac{1}{2}-6\sqrt{2},-\frac{1}{2}+6\sqrt{2}}]$ | B. | [-6,6] | C. | $[{-\frac{1}{2}-3\sqrt{2},-\frac{1}{2}+3\sqrt{2}}]$ | D. | [-4,4] |
分析 运用向量的三角形法则,结合向量的数量积的定义,可得$\overrightarrow{ME}•\overrightarrow{OF}$=-$\frac{1}{2}$-$\overrightarrow{ME}$•$\overrightarrow{MO}$,再由向量的数量积定义及余弦函数的值域即可得到$\overrightarrow{ME}•\overrightarrow{OF}$(O为坐标原点)的取值范围.
解答 解:由题意可得$\overrightarrow{OF}$=$\overrightarrow{OM}$+$\overrightarrow{MF}$,
∴$\overrightarrow{ME}•\overrightarrow{OF}$=$\overrightarrow{ME}$•($\overrightarrow{OM}$+$\overrightarrow{MF}$)=$\overrightarrow{ME}$•$\overrightarrow{OM}$+$\overrightarrow{ME}$•$\overrightarrow{MF}$=$\overrightarrow{ME}$•$\overrightarrow{OM}$+|$\overrightarrow{ME}$||$\overrightarrow{MF}$|cos120°
=-$\frac{1}{2}$-$\overrightarrow{ME}$•$\overrightarrow{MO}$,
由于圆M:(x-3)2+(y-3)2=4,则圆心M(3,3),半径r=2,
则OM=3$\sqrt{2}$,ME=1,
可得$\overrightarrow{ME}$•$\overrightarrow{MO}$=1×3$\sqrt{2}$cos<$\overrightarrow{ME}$,$\overrightarrow{MO}$>∈[-3$\sqrt{2}$,3$\sqrt{2}$],
故$\overrightarrow{ME}•\overrightarrow{OF}$(O为坐标原点)的取值范围是[-$\frac{1}{2}$-3$\sqrt{2}$,-$\frac{1}{2}$+3$\sqrt{2}$].
故选C.
点评 本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦函数的值域,
| A. | 4 | B. | 6 | C. | 8 | D. | 12 |
| 用电量(度) | (0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
| 户数 | 5 | 15 | 10 | 15 | 5 |
(2)已知该县某山区自然村有居民300户,若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以元/度进行收购.经测算以每千瓦装机容量平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?
| A. | (-∞,-3] | B. | (-∞,-4] | C. | (-∞,6] | D. | [0,6] |
| A. | (-∞,$\frac{1}{4}$) | B. | (2,+∞) | C. | (-2,$\frac{1}{4}$) | D. | (-∞,2)∪($\frac{1}{4}$,+∞) |