题目内容

3.在△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{\sqrt{3}a}{cosA}$=$\frac{b}{sinB}$.
(Ⅰ)求角A的值;
(Ⅱ)若B=$\frac{π}{6}$,且△ABC的面积为4$\sqrt{3}$,求BC边上的中线AM的大小.

分析 (Ⅰ)由正弦定理,同角三角函数基本关系式可求tanA,结合范围A∈(0,π),可得A的值.
(Ⅱ)由题意设AC=BC=2a,利用三角形面积公式可求a的值,在△ACM中,由余弦定理即可求得AM的值.

解答 解:(Ⅰ)由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}$,又由已知$\frac{\sqrt{3}a}{cosA}=\frac{b}{sinB}$,
所以$\frac{\sqrt{3}a}{cosA}=\frac{a}{sinA}$,tanA=$\frac{\sqrt{3}}{3}$,
因为A∈(0,π),所以A=$\frac{π}{6}$.
(Ⅱ)由已知B=$\frac{π}{6}$,则△ABC是等腰三角形,∠C=$\frac{2π}{3}$,设AC=BC=2a,
S△ABC=$\frac{1}{2}AC•BC•sin∠ACB$=$\frac{1}{2}•(2a)^{2}sin\frac{2π}{3}$=$\sqrt{3}$a2
由已知△ABC的面积为4$\sqrt{3}$,得a2=4,a=2,
△ACM中,由余弦定理,AM2=CA2+CM2-2CA•CM•cos$\frac{2π}{3}$
=42+22-2×2×4×(-$\frac{1}{2}$)=28,
所以AM=2$\sqrt{7}$.

点评 本题主要考查了正弦定理,同角三角函数基本关系式,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网