题目内容
已知数列{an}为等差数列,a3=5,a4+a8=22.
(1)求数列{an}的通项公式an及前n项和公式Sn;
(2)令bn=
,求证:b1+b2+…bn<
.
(1)求数列{an}的通项公式an及前n项和公式Sn;
(2)令bn=
| n+1 |
| SnSn+2 |
| 5 |
| 16 |
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知求出等差数列的首项和公差,代入等差数列的通项公式和前n项和得答案;
(2)把等差数列的前n项和代入bn=
,列项和求出b1+b2+…bn,放缩后得答案.
(2)把等差数列的前n项和代入bn=
| n+1 |
| SnSn+2 |
解答:
(1)解:由a4+a8=22得:a6=11,
又a3=5,
∴d=2,
则a1=a3-2d=1.
∴an=2n-1;
Sn=na1+
=n+
═n2 ;
(2)证明:bn=
=
=
(
-
),
当n=1时,b1=
=
<
,原不等式成立;
当n≥2时,
b1+b2+…+bn=
(
-
+
-
+…+
-
)
=
(
+
-
-
)<
(1+
)-
(
+
)=
-
(
+
)<
.
∴b1+b2+…+bn<
.
又a3=5,
∴d=2,
则a1=a3-2d=1.
∴an=2n-1;
Sn=na1+
| n(n-1)d |
| 2 |
| 2n(n-1) |
| 2 |
(2)证明:bn=
| n+1 |
| SnSn+2 |
| n+1 |
| n2(n+2)2 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
当n=1时,b1=
| 2 |
| 12×32 |
| 2 |
| 9 |
| 5 |
| 16 |
当n≥2时,
b1+b2+…+bn=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 32 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 5 |
| 16 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+1)2 |
| 5 |
| 16 |
∴b1+b2+…+bn<
| 5 |
| 16 |
点评:本题考查了等差数列的通项公式,训练了裂项相消法求数列的和,训练了放缩法证明数列不等式,是中档题.
练习册系列答案
相关题目
| lim |
| △x→0 |
| f(x0+△x)-f(x0-△x) |
| 2△x |
A、
| ||
| B、f′(x0) | ||
| C、2f′(x0) | ||
| D、-f′(x0) |
已知正项等比数列{an}的公比为q,其前n项积为Tn,并满足a1>1,
<0,则以下结论错误的是( )
| a9a10-1 |
| a9a11-1 |
| A、0<q<1 |
| B、Tn的最大值是T10 |
| C、a9a10>1 |
| D、使Tn>1的最大自然数n为18 |