题目内容

16.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x+2016)2f(x+2016)-f(-1)>0的解集为(-∞,-2017).

分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.

解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
则当x<0时,
得F′(x)<0,即F(x)在(-∞,0)上是减函数,
∴F(x+2016)=(x+2016)2f(x+2016),F(-1)=f(-1),
即不等式等价为F(x+2016)-F(-1)>0,
∵F(x)在(-∞,0)是减函数,
∴由F(x+2016)>F(-1)得,x+2016<-1,
即x<-2017,
故答案为:(-∞,-2017).

点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关题目
11.中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
井号I123456
坐标(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
钻探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精确到0.01)相比于(Ⅰ)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网