题目内容
14.假设你家订了一份牛奶,送奶工人在早上6:00-7:00之间把牛奶送到你家,你离开家去上学的时间在早上6:30-7:30之间,则你在离开家前能收到牛奶的概率是( )| A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
分析 设送奶人到达的时间为x,此人离家的时间为y,以横坐标表示奶送到时间,以纵坐标表示此人离家时间,建立平面直角坐标系,作图求面积之比即可
解答 解:设送奶人到达的时间为x,此人离家的时间为y,
以横坐标表示奶送到时间,以纵坐标表示此人离家时间,
建立平面直角坐标系(如图)![]()
则此人离开家前能收到牛奶的事件构成区域如图
∴所求概率P=1-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{7}{8}$;
故选:D.
点评 本题考查几何概型的会面问题,准确作图利用面积作为几何测度是解决问题的关键,属中档题.
练习册系列答案
相关题目
5.
已知抛物线C:y2=2px(p>0),O为坐标原点,F为其焦点,准线与x轴交点为E,P为抛物线上任意一点,则$\frac{|PF|}{|PE|}$( )
| A. | 有最小值$\frac{\sqrt{2}}{2}$ | B. | 有最小值1 | C. | 无最小值 | D. | 最小值与p有关 |
19.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x+y-4≤0{,_{\;}}}\\{x-2y+2≤0}\\{kx-y+1≥0}\end{array}}$其中k>$\frac{1}{2}$,若目标函数z=x-y的最小值大于-3,则k的取值范围是( )
| A. | ($\frac{1}{2}$,3) | B. | (3,+∞) | C. | ($\frac{1}{2}$,5) | D. | (5,+∞) |
4.已知集合A={y|y=2x-1,x∈R},B={x|y=lg(x-2)},则下列结论正确的是( )
| A. | -1∈A | B. | 3∉B | C. | A∪B=B | D. | A∩B=B |