题目内容
9.求解下列问题:(1)用排列数表示(55-n)(56-n)…(69-n)(n∈N*且n<55);
(2)计算$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$;
(3)解方程:${A}_{2x+1}^{4}$=140${A}_{x}^{3}$.
分析 (1)通过变形可知(55-n)(56-n)…(69-n)=(69-n)[(69-n)-1][(69-n)-2]…[(69-n)-14],利用排列数公式即得结论;
(2)利用排列数公式计算即得结论;
(3)利用排列数公式化简可知4x2-35x+69=0,进而计算可得结论.
解答 解:(1)(55-n)(56-n)…(69-n)
=(69-n)[(69-n)-1][(69-n)-2]…[(69-n)-14]
=${A}_{69-n}^{15}$(n∈N*且n<55);
(2)$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$=$\frac{\frac{2×8!}{3!}+\frac{7×8!}{4!}}{8!-\frac{9!}{4!}}$
=$\frac{\frac{8×8!}{4!}+\frac{7×8!}{4!}}{\frac{4!×8!}{4!}-\frac{9×8!}{4!}}$
=$\frac{8+7}{4!-9}$
=1;
(3)∵${A}_{2x+1}^{4}$=140${A}_{x}^{3}$,
∴(2x+1)•2x•(2x-1)(2x-2)=140x(x-1)(x-2),
整理得:(2x+1)(2x-1)=35(x-2),即4x2-35x+69=0,
解得:x=3或x=$\frac{23}{4}$(舍).
点评 本题考查排列数公式的推导,考查运算求解能力,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
19.若函数y=ax+b(a>0且a≠1)的图象经过第二、三、四象限,则有( )
| A. | 0<a<1,b<-1 | B. | 0<a<1,b>1 | C. | a>1,b<-1 | D. | a>1,b>1 |
20.已知一个几何体的三视图如图所示,则该几何体的体积是( )

| A. | $\frac{7}{6}$ | B. | $\frac{7}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{6}$ |
14.假设你家订了一份牛奶,送奶工人在早上6:00-7:00之间把牛奶送到你家,你离开家去上学的时间在早上6:30-7:30之间,则你在离开家前能收到牛奶的概率是( )
| A. | $\frac{1}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{7}{8}$ |
19.甲在某随机试验中,得到一组数据:6,8,8,9,8,9,8,8,7,9.关于这组数据.下列表述中,错误的是( )
| A. | 众数为8 | B. | 平均数为8 | C. | 中位数为8 | D. | 方差为8 |