题目内容
16.在△ABC中,(1)若a,b,c成等比数列,则角B的取值范围是(0,$\frac{π}{3}$];
(2)若a,b,c成等差数列,则角B的取值范围是(0,$\frac{π}{3}$].
分析 (1)根据题中已知条件求出a,b,c之间的关系,然后利用余弦定理便可求出cosB的值,即可求出角B的范围.
(2)由等差数列的性质可知2b=a+c,利用余弦定理表示出cosB,然后把b=$\frac{1}{2}$(a+c)代入,利用基本不等式即可求出cosB的最小值,根据B的范围及余弦函数在此区间为减函数即可得到B的范围.
解答 解:(1)由题意知:a,b,c成等比数列,
∴b2=ac,
又∵a,b,c是三角形的三边,不妨设a≤b≤c,
由余弦定理得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,
故:B∈(0,$\frac{π}{3}$].
(2)由题意可得,2b=a+c,
由余弦定理可得,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-(\frac{a+c}{2})^{2}}{2ac}$=$\frac{3({a}^{2}+{c}^{2})-2ac}{8ac}$≥$\frac{6ac-2ac}{8ac}$=$\frac{1}{2}$,
又B∈(0,π),且余弦函数在此区间为减函数,
则B∈(0,$\frac{π}{3}$].
故答案为:(0,$\frac{π}{3}$],(0,$\frac{π}{3}$].
点评 本题考查了等比数列的基本性质与三角函数的综合应用,考查了学生的计算能力以及对知识的综合掌握,涉及的知识有:余弦定理,等差数列的性质,基本不等式,以及余弦函数的图象与性质,熟练掌握定理及性质是解本题的关键.
| a11 | a12 | a13 | … |
| a21 | a22 | a23 | … |
| a31 | a32 | a33 | … |
| … | … | … | … |
(Ⅰ) 求q的值;
(Ⅱ) 求aij的计算公式;
(Ⅲ)设数列{bn}满足bn=ann,{bn}的前n项和为Sn,求Sn.
| x | 4.25 | 1.57 | -0.61 | -0.59 | 0 | 0.42 | -0.35 | 0.56 | 0.26 | 3.27 |
| y | -226.05 | -10.04 | 0.07 | 0.03 | 0 | 0.20 | -0.22 | 0.03 | 0.21 | -101.63 |
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间[0.41,+∞)单调递减.
| A. | ($-∞,\frac{1}{2}$) | B. | (-∞,2] | C. | [4,+∞) | D. | (-∞,-2] |
| A. | $\frac{1+y}{1-y}$ | B. | ln$\frac{1+y}{1-y}$ | C. | $\frac{1}{2}$ln$\frac{1+y}{1-y}$ | D. | $\frac{1}{2}$ln$\frac{1-y}{1+y}$ |
| A. | 36 | B. | 25 | C. | 16 | D. | 9 |