题目内容

20.在平面直角坐标系xOy中,已知角α的顶点和点O重合,始边与x轴的非负半轴重合,终边上一点M坐标为$(1,\sqrt{3})$,则$tan(α+\frac{π}{4})$=$-2-\sqrt{3}$.

分析 利用三角函数的定义,可求tanα,进而利用两角和的正切函数公式即可得出结论.

解答 解:∵点P(1,$\sqrt{3}$)是角α终边上一点,
∴tanα=$\sqrt{3}$,
∴$tan(α+\frac{π}{4})$=$\frac{tanα+1}{1-tanα}$=$\frac{\sqrt{3}+1}{1-\sqrt{3}}$=$-2-\sqrt{3}$.
故答案为:$-2-\sqrt{3}$.

点评 本题考查三角函数的定义,两角和的正切函数公式在三角函数化简求值中的应用,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网