题目内容
设D、P为△ABC内的两点,且满足| AD |
| 1 |
| 5 |
| AB |
| AC |
| AP |
| AD |
| 1 |
| 10 |
| BC |
| S△APD |
| S△ABC |
分析:取BC的中点E,根据条件得AD在△ABC的中线AE上,DP∥BC∴△APD的面积=
×DP×高h,△ABC的面积=
×BC×高H,而高之比h:H=AD:AE所以面积之比等于
×
,从而求得结果.
| 1 |
| 2 |
| 1 |
| 2 |
| h |
| H |
| AD |
| AE |
解答:解:取BC的中点E,连接AE,则
+
=2
∴
=
;∵
=
+
∴
-
=
∴
=
故DP∥BC且DP=
BC∴△APD与△ABC的高之比为h:H=AD:AE=2:5
S△APD:S△ABC=
×
=
×
=
故答案为:
.
| AB |
| AC |
| AE |
| AD |
| 2 |
| 5 |
| AE |
| AP |
| AD |
| 1 |
| 10 |
| BC |
| AP |
| AD |
| 1 |
| 10 |
| BC |
| DP |
| 1 |
| 10 |
| BC |
| 1 |
| 10 |
S△APD:S△ABC=
| h |
| H |
| DP |
| BC |
| 2 |
| 5 |
| 1 |
| 10 |
| 1 |
| 25 |
故答案为:
| 1 |
| 25 |
点评:本题考查向量的运算的几何意义,再根据三角形面积公式求比值.
练习册系列答案
相关题目