题目内容
11.命题“对任意的x∈R,x2-2x+1≥0”的否定是( )| A. | 不存在x0∈R,${x_0}^2-2{x_0}+1≥0$ | B. | 存在x0∈R,${x_0}^2-2{x_0}+1≤0$ | ||
| C. | 存在x0∈R,${x_0}^2-2{x_0}+1<0$ | D. | 对任意的x∈R,x2-2x+1<0 |
分析 特称命题的否定是全称命题,同时将命题的结论否定.
解答 解:根据全称命题的否定是特称命题可得命题“对任意的x∈R,x2-2x+1≥0”的否定是存在x0∈R,${x_0}^2-2{x_0}+1<0$,
故选:C.
点评 本题考查特称命题的否定,解题的关键是熟练掌握特称命题的否定的书写规则,依据规律得到答案,要注意理解含有量词的命题的书写规则,特称命题的否定是全称命题,全称命题的否定是特称命题.
练习册系列答案
相关题目
6.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的( )
| A. | 充分必要条件 | B. | 必要不充分条件 | ||
| C. | 充分不必要条件 | D. | 既不充分也不必要条件 |
3.如图所示,正方体ABCD-A′B′C′D′的棱长为1,O是平面A′B′C′D′的中心,则O到平面ABC′D′的距离是( )

| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |