题目内容

化简:
(1)sin120°cos(-30°)+cos60°sin(-1050°);
(2)
cos(-
π
2
+α)sin(2π+α)cos(π+α)cos(
2
-α)
cos(π-α)sin(-π-α)sin(3π-α)sin(
15π
2
+α)
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:(1)直接利用诱导公式以及特殊角的三角函数值求解即可.
(2)直接利用诱导公式化简求解即可.
解答: 解:(1)sin120°cos(-30°)+cos60°sin(-1050°)=
3
2
×
3
2
-
1
2
×
1
2
=
1
2

(2)
cos(-
π
2
+α)sin(2π+α)cos(π+α)cos(
2
-α)
cos(π-α)sin(-π-α)sin(3π-α)sin(
15π
2
+α)
=
sinαsinαcosαsinα
cosαsinαsinαcosα
=1.
点评:本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网