题目内容
给定函数①y=x,②y=(x+1),③y=|x-1|,
④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )
A.①② B.②③
C.③④ D.①④
B
利用随机模拟方法计算y=x2与y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=a1·4-2,b=b1·4,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模拟得出的面积约为________.
函数f(x)的定义域为[0,1],则函数g(x)=f(x-a)+f(x+a)的定义域为________.
“龟兔赛跑”讲过了这样一个故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到了终点,用S1、S2分别表示乌龟和兔子所行的路线,t为时间,则图中与故事情节相吻合的是( )
北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(30天计算)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?
下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是( )
A.f(x)=x3 B.f(x)=3x
C.f(x)=x D.f(x)=()x
函数y=(x2-3x)的单调递减区间是________.
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x.则函数g(x)=f(x)-x+3的零点的集合为( )
A.{1,3} B.{-3,-1,1,3}
C.{2-,1,3} D.{-2-,1,3}
已知△ABC中,a=、b=、B=60°,那么角A等于( )
A.135° B.90°
C.45° D.30°