题目内容

14.在三角形ABC中,ABC表示三角形ABC的三个内角.sinA=$\sqrt{3}$(1+cosA)
(1)求:角A
(2)若$sinBsinC=\frac{{\sqrt{3}-1}}{4}$.求:角B.

分析 (1)利用三角函数的倍角公式结合三角函数函数值进行化简计算即可.
(2)利用两角和差的余弦公式进行转化求解即可.

解答 解:(1)由sinA=$\sqrt{3}$(1+cosA)
得2sin$\frac{A}{2}$cos$\frac{A}{2}$=$\sqrt{3}$(1+2cos2$\frac{A}{2}$-1)=2$\sqrt{3}$cos2$\frac{A}{2}$,
∵0<A<π,∴0<$\frac{A}{2}$<$\frac{π}{2}$,
则0<cos$\frac{A}{2}$<1,
∴sin$\frac{A}{2}$=$\sqrt{3}$cos$\frac{A}{2}$,
即tan$\frac{A}{2}$=$\sqrt{3}$,
则$\frac{A}{2}$=$\frac{π}{3}$,
则A=$\frac{2π}{3}$
(2)∵A=$\frac{2π}{3}$,
∴B+C=$\frac{π}{3}$,
则cos(B-C)=cosBcosC+sinBsinC=cos(B+C)+2sinBsinC=cos$\frac{π}{3}$+2×$\frac{\sqrt{3}-1}{4}$=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$$-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$,
∵-$\frac{π}{3}$<B-C<$\frac{π}{3}$,
∴B-C=$\frac{π}{6}$或-$\frac{π}{6}$,
∵B+C=$\frac{π}{3}$,
∴解得B=$\frac{π}{12}$或$\frac{π}{4}$.

点评 本题主要考查三角函数的化简和求值,利用三角函数的倍角公式以及两角和差的余弦公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网