题目内容

14.若函数f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的图象关于点($\frac{3π}{2}$,0)对称,则函数f(x)的最大值等于(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 由函数的对称性可得f(0)=-f(3π),代入计算可得a值,再由三角函数的最值可得.

解答 解:∵函数f(x)=sin$\frac{x}{2}$+acos$\frac{x}{2}$的图象关于点($\frac{3π}{2}$,0)对称,
∴f(0)=-f(2×$\frac{3π}{2}$),即f(0)=-f(3π),
代值可得a=-sin$\frac{3π}{2}$-acos$\frac{3π}{2}$,解得a=1,
∴f(x)=sin$\frac{x}{2}$+cos$\frac{x}{2}$=$\sqrt{2}$sin($\frac{x}{2}$+$\frac{π}{4}$),
∴函数f(x)的最大值为$\sqrt{2}$,
故选:B.

点评 本题考查三角函数恒等变换,涉及函数图象的对称性和三角函数最值,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网