题目内容
8.某大学进行自主招生考试面试,需将每5位考生组成一组进行口头答题,每位考生可以从5个备选题目中任选1题口头作答,则至少有1个题目没有被这5个考生选中的情况有( )| A. | 3005种 | B. | 120种 | C. | 1500种 | D. | 400种 |
分析 利用间接法,先确定个考生无遗漏的选择是55种,再去掉5道题被选的情况,即可得出结论.
解答 解:由题意,每个考生都有5种选择,所以5个考生无遗漏的选择是55种,
∴至少有1个题目没有被这5个考生选中的情况有55-${A}_{5}^{5}$=3005种.
故选:A.
点评 本题考查计数原理的应用,考查间接法,解题的关键是去掉5道题被选的情况,属于中档题.
练习册系列答案
相关题目
18.在△ABC中,a=2,A=30°,C=45°,则S△ABC=( )
| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{3}+1$ | D. | $\frac{1}{2}({\sqrt{3}+1})$ |