题目内容
设集合A={x|x≤a},B={x|x2-2x-3>0},若A∩B=A,则( )
| A、a<-1 | B、a≤-1 |
| C、a>3 | D、a≥3 |
考点:交集及其运算
专题:函数的性质及应用,集合
分析:集合A={x|x≤a},B={x|x<-1或x>3},A∩B=A,由此能求出a的取值范围.
解答:
解:∵集合A={x|x≤a},
B={x|x2-2x-3>0}={x|x<-1或x>3},A∩B=A,
∴a<-1.
故选:A.
B={x|x2-2x-3>0}={x|x<-1或x>3},A∩B=A,
∴a<-1.
故选:A.
点评:本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意交集的性质的灵活运用.
练习册系列答案
相关题目
已知x<a<0,则下列不等式一定成立的是( )
| A、0<x2<a2 |
| B、x2>ax>a2 |
| C、0<x2<ax |
| D、x2>a2>ax |
已知向量
,
满足:|
|=3,|
|=2,|
+
|=4,则|
-
|=( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、4
| ||
| C、4 | ||
| D、1 |
如图,在杨辉三角中,虚线所对应的斜行的各数之和构成一个新数列,则数列的第10项为( )

| A、55 | B、89 |
| C、120 | D、144 |
下列四个函数中,满足“对任意x1,x2∈(0,+∞),都有
<0”的是( )
| f(x1)-f(x2) |
| x1-x2 |
A、f(x)=
| ||
| B、f(x)=(x-1)2 | ||
| C、f(x)=2x | ||
| D、y=log2x |
定义“正对数”:ln+x=
,若a>0,b>0现有四个命题:
①ln+(ab)=bln+a
②ln+(ab)=ln+a+ln+b
③ln+(
)≥ln+a-ln+b
④ln+(a+b)≤ln+a+ln+b+ln2
其中正确的有( )
|
①ln+(ab)=bln+a
②ln+(ab)=ln+a+ln+b
③ln+(
| a |
| b |
④ln+(a+b)≤ln+a+ln+b+ln2
其中正确的有( )
| A、①④ | B、③④ |
| C、①③④ | D、①②④ |
设集合A={0,1},则满足条件A∪B={0,1,2,3}的集合B共有( )
| A、1个 | B、2个 | C、3个 | D、4个 |
| 1 |
| sin10° |
| ||
| cos10° |
| A、4 | ||
| B、2 | ||
| C、1 | ||
D、
|