ÌâÄ¿ÄÚÈÝ
12£®ÒÔÏÂËĸö½áÂÛ£¬ÕýÈ·µÄÊÇ¢ÙÖʼìÔ±´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬Ã¿¼ä¸ô10·ÖÖÓ³éȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇ·Ö²ã³éÑù£»
¢ÚÔÚÆµÂÊ·Ö²¼Ö±·½Í¼ÖУ¬ËùÓÐС¾ØÐεÄÃæ»ýÖ®ºÍÊÇ1£»
¢ÛÔڻعéÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=0.2x+12ÖУ¬µ±±äÁ¿xÿÔö¼ÓÒ»¸öµ¥Î»Ê±£¬±äÁ¿yÒ»¶¨Ôö¼Ó0.2¸öµ¥Î»£»
¢Ü¶ÔÓÚÁ½¸ö·ÖÀà±äÁ¿XÓëY£¬Çó³öÆäͳ¼ÆÁ¿K2µÄ¹Û²âÖµk£¬¹Û²âÖµkÔ½´ó£¬ÎÒÃÇÈÏΪ¡°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ȾÍÔ½´ó£®£¨¡¡¡¡£©
| A£® | ¢Ù¢Ü | B£® | ¢Ú¢Û | C£® | ¢Ù¢Û | D£® | ¢Ú¢Ü |
·ÖÎö ÓÉϵͳ³éÑùºÍ·Ö²ã³éÑùµÄ¸ÅÄîÅжϢ٣»ÓÉÆµÂÊ·Ö²¼Ö±·½Í¼ÖоØÐÎÃæ»ýµÄÒâÒåÅжϢڣ»ÓɻعéÖ±Ïß·½³ÌµÄÒ»´ÎÏîϵÊýµÄ·ûºÅ£¬¼´¿ÉÅжϢۣ»Óɹ۲âÖµkÓëÁ½¸ö±äÁ¿XÓëYÓйØÏµÅжϢܣ®
½â´ð ½â£º¢ÙÖʼìÔ±´ÓÔÈËÙ´«µÝµÄ²úÆ·Éú²úÁ÷Ë®ÏßÉÏ£¬Ã¿¼ä¸ô10·ÖÖÓ³éȡһ¼þ²úÆ·½øÐÐijÏîÖ¸±ê¼ì²â£¬ÕâÑùµÄ³éÑùÊÇϵͳ³éÑù£¬¹Ê¢Ù´íÎó£»
¢ÚÔÚÆµÂÊ·Ö²¼Ö±·½Í¼ÖУ¬ËùÓÐС¾ØÐεÄÃæ»ýÖ®ºÍÊÇ1£¬¹Ê¢ÚÕýÈ·£»
¢ÛÔڻعéÖ±Ïß·½³Ì$\stackrel{¡Ä}{y}$=0.2x+12ÖУ¬µ±±äÁ¿xÿÔö¼ÓÒ»¸öµ¥Î»Ê±£¬±äÁ¿yƽ¾ùÔö¼Ó0.2¸öµ¥Î»£¬¹Ê¢Û´íÎó£»
¢Ü¶ÔÓÚÁ½¸ö·ÖÀà±äÁ¿XÓëY£¬Çó³öÆäͳ¼ÆÁ¿K2µÄ¹Û²âÖµk£¬¹Û²âÖµkÔ½´ó£¬ÎÒÃÇÈÏΪ¡°XÓëYÓйØÏµ¡±µÄ°ÑÎճ̶ȾÍÔ½´ó£¬¹Ê¢ÜÕýÈ·£®¡¡
¡àÕýÈ·µÄÃüÌâÊǢڢܣ®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϺÍÓ¦Ó㬿¼²é³éÑù·½·¨ºÍ»Ø¹éÖ±Ïß·½³Ì¡¢Ëæ»ú±äÁ¿µÄ¹Û²âÖµ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®ÒÑ֪˫ÇúÏß$\frac{x^2}{3}-\frac{y^2}{2}=1$µÄ×ó£¬ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬OÎª×ø±êԵ㣬ԲOÊÇÒÔF1F2Ϊֱ¾¶µÄÔ²£¬Ö±Ïß$l£º\sqrt{2}x+\sqrt{3}y+t=0$ÓëÔ²OÓй«¹²µã£®ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $[{-2\sqrt{2}£¬2\sqrt{2}}]$ | B£® | [-4£¬4] | C£® | [-5£¬5] | D£® | $[{-5\sqrt{2}£¬5\sqrt{2}}]$ |