题目内容
17.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足$\frac{x-3}{x+2}$<0.(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若?q是?p的充分不必要条件,求实数a的取值范围.
分析 (1)分别求出关于p,q的不等式,根据p真且q真取交集即可;(2)由p是q的充分不必要条件,得到关于a的不等式,解出即可.
解答 解:(1)由x2-4ax+3a2<0得(x-3a)(x-a)<0,
又a>0,所以a<x<3a,
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
由实数x满足$\frac{x-3}{x+2}<0$
得-2<x<3,即q为真时实数x的取值范围是-2<x<3.
若p∧q为真,则p真且q真,所以实数x的取值范围是1<x<3.-----(5分)
(2)?q是?p的充分不必要条件,即p是q的充分不必要条件
由a>0,及3a≤3得0<a≤1,所以实数a的取值范围是0<a≤1.------(10分)
点评 本题考查了充分必要条件,考查集合的包含关系,是一道中档题.
练习册系列答案
相关题目
5.在△ABC中,a,b,c分别是内角A,B,C所对的边,已知a=4,B=60°,C=75°,则b=( )
| A. | 2$\sqrt{5}$ | B. | 2$\sqrt{6}$ | C. | 2$\sqrt{3}$ | D. | $\frac{11}{3}$ |
12.已知等差数列{an}的前n项和Sn满足S2=-1,S5=5,则数列{$\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$}的前2016项的和为( )
| A. | $\frac{2016}{4033}$ | B. | -$\frac{4032}{4031}$ | C. | $\frac{2016}{4031}$ | D. | -$\frac{2016}{4031}$ |
2.设U={1,2,3,4,5},A={1,2,5},B={2,3,4},则B∩∁UA=( )
| A. | ∅ | B. | {2} | C. | {3,4} | D. | {1,3,4,5} |
13.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1和双曲线N:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其中b>a>0,双曲线M和双曲线N交于A,B,C,D四个点,且四边形ABCD的面积为4c2,则双曲线M的离心率为( )
| A. | $\frac{\sqrt{5}+3}{2}$ | B. | $\sqrt{5}$+3 | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\sqrt{5}$+1 |