ÌâÄ¿ÄÚÈÝ
17£®Æ½ÃæÄÚÓÐ$\overrightarrow{o{p_1}}+\overrightarrow{o{p_2}}+\overrightarrow{o{p_3}}=\overrightarrow 0$£¬ÇÒ$|\overrightarrow{o{p_1}}|=|\overrightarrow{o{p_2}}|=|\overrightarrow{o{p_3}}|=1$£¬Ôò¡÷P1P2P3µÄÐÎ×´ÊǵȱßÈý½ÇÐΣ®·ÖÎö Éè³ö×ø±ê£¬¸ù¾Ý×ø±êÔËËãµÃµ½P1P2=P1P3=P2P3£¬¼´¿ÉÅжÏÈý½ÇÐεÄÐÎ×´£®
½â´ð ½â£ºÉèP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬P3£¨x3£¬y3£©£¬
¡ß$|\overrightarrow{o{p_1}}|=|\overrightarrow{o{p_2}}|=|\overrightarrow{o{p_3}}|=1$£¬
¡à$\left\{\begin{array}{l}{\left.\begin{array}{l}{{x}_{1}^{2}{+y}_{1}^{2}=1}\\{{x}_{2}^{2}{+y}_{2}^{2}=1}\end{array}\right.}\\{{x}_{3}^{2}{+y}_{3}^{2}=1}\end{array}\right.$£¬
¡ß$\overrightarrow{o{p_1}}+\overrightarrow{o{p_2}}+\overrightarrow{o{p_3}}=\overrightarrow 0$£¬
¡à$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}+{x}_{3}=0}\\{{y}_{1}+{y}_{2}+{y}_{3}=0}\end{array}\right.$£¬
¡à$\left\{\begin{array}{l}{{x}_{1}+{x}_{2}=-{x}_{3}}\\{{y}_{1}+{y}_{2}=-{y}_{3}}\end{array}\right.$£¬
¡à£¨x1+x2£©2+£¨y1+y2£©2=x32+y32£¬
¡à2x1 x2+2y1 y2=-1£¬
¡àp1p2=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$=$\sqrt{3}$£¬
P1P3=P2P3=$\sqrt{3}$£¬
¡àP1P2=P1P3=P2P3£¬
¡à¡÷P1P2P3ÊǵȱßÈý½ÇÐΣ®
¹Ê´ð°¸Îª£ºµÈ±ßÈý½ÇÐΣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÏòÁ¿µÄÔËË㣬Èý½ÇÐÎÐÎ×´µÄÅжϣ¬¿¼²éÁËÊýÐνáºÏ˼ÏëºÍת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | ÖйúÅ®ÅÅÕæ°ô£¡ | B£® | ÉÁ¹âµÄ¶«Î÷²¢·Ç¶¼Êǽð×Ó | ||
| C£® | ¾¹ýÈýµãÈ·¶¨Ò»¸öÆ½Ãæ | D£® | 3-5=1 |
| 7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
| 3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
| A£® | 08 | B£® | 07 | C£® | 02 | D£® | 01 |
| 7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 1128 | 0598 |
| 3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
| A£® | 11 | B£® | 02 | C£® | 05 | D£® | 04 |