题目内容
12.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为( )| 7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 1128 | 0598 |
| 3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
| A. | 11 | B. | 02 | C. | 05 | D. | 04 |
分析 根据随机数表,依次进行选择即可得到结论.
解答 解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,11,05,其中第二个和第⑤个都是02,重复.
可知对应的数值为.08,02,14,07,11,05
则第6个个体的编号为05.
故选:C.
点评 本题主要考查简单随机抽样的应用,正确理解随机数法是解决本题的关键,比较基础.
练习册系列答案
相关题目
20.有5位学生和4位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( )
| A. | (5!)2种 | B. | 4!•5!种 | C. | $A_6^4$•5!种 | D. | A${\;}_{5}^{3}$•5!种 |
4.若命题“?x∈[1,5],使x2+ax+2>0”为真命题,则实数a的取值范围为( )
| A. | $(-\frac{27}{5},+∞)$ | B. | (-3,+∞) | C. | $(-2\sqrt{2},+∞)$ | D. | $(-3,-2\sqrt{2})$ |