题目内容
设数列{an}的前n项和为Sn,已知a1=5,an+1=Sn+3n(n∈N*).
(1)令bn=Sn-3n,求证:{bn}是等比数列;
(2)令cn=
,设Tn是数列{cn}的前n项和,求满足不等式Tn>
的n的最小值.
(1)令bn=Sn-3n,求证:{bn}是等比数列;
(2)令cn=
| 1 |
| log2bn+1•log2bn+2 |
| 2011 |
| 4026 |
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn+1-Sn=Sn+3n,从而得到
=2,由此能证明{bn}是首项为2,公比为2的等比数列.
(2)由(1)知bn =2n,cn=
=
-
,由此利用裂项求和法得到
>
,从而能培育出满足不等式Tn>
的n的最小值.
| Sn+1-3n+1 |
| Sn-3n |
(2)由(1)知bn =2n,cn=
| 1 |
| log2bn+1•log2bn+2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
| 2011 |
| 4026 |
| 2011 |
| 4026 |
解答:
(1)证明:∵a1=5,an+1=Sn+3n(n∈N*),
∴Sn+1-Sn=Sn+3n,
∴Sn+1=2Sn+3n,
∴Sn+1-3n+1=2Sn+3n-3n+1=2(Sn-3n),
∴
=2,
∵S1-3=5-3=2,bn=Sn-3n,
∴{bn}是首项为2,公比为2的等比数列.
(2)解:由(1)知bn =2n,
∴cn=
=
=
-
,
∴Tn=(
-
)+(
-
)+…+(
-
)
=
-
=
.
∵Tn>
,∴
>
,
∵n∈N* ,∴2023n>2011n+4022,解得n>2011,
∴满足不等式Tn>
的n的最小值为2022.
∴Sn+1-Sn=Sn+3n,
∴Sn+1=2Sn+3n,
∴Sn+1-3n+1=2Sn+3n-3n+1=2(Sn-3n),
∴
| Sn+1-3n+1 |
| Sn-3n |
∵S1-3=5-3=2,bn=Sn-3n,
∴{bn}是首项为2,公比为2的等比数列.
(2)解:由(1)知bn =2n,
∴cn=
| 1 |
| log2bn+1•log2bn+2 |
=
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴Tn=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
∵Tn>
| 2011 |
| 4026 |
| n |
| 2(n+2) |
| 2011 |
| 4026 |
∵n∈N* ,∴2023n>2011n+4022,解得n>2011,
∴满足不等式Tn>
| 2011 |
| 4026 |
点评:本题考查等比数列的证明,考查满足不等式有自然数的最小值的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目