ÌâÄ¿ÄÚÈÝ
6£®£¨¢ñ£©ÇóÕýÕûÊýa£¬b£¬NµÄÖµ£»
£¨¢ò£©ÏÖÒª´ÓÄêÁäµÍÓÚ40ËêµÄÔ±¹¤Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡42ÈË£¬ÔòÄêÁäÔÚµÚ1£¬2£¬3×éµÃÔ±¹¤ÈËÊý·Ö±ðÊǶàÉÙ£¿
£¨¢ó£©ÎªÁ˹À¼Æ¸Ãµ¥Î»Ô±¹¤µÄÔĶÁÇãÏò£¬ÏֶԸõ¥Î»ËùÓÐÔ±¹¤Öа´ÐÔ±ð±ÈÀý³é²éµÄ40ÈËÊÇ·ñϲ»¶ÔĶÁ¹úѧÀàÊé
| ϲ»¶ÔĶÁ¹úѧÀà | ²»Ï²»¶ÔĶÁ¹úѧÀà | ºÏ¼Æ | |
| ÄÐ | 14 | 4 | 18 |
| Å® | 8 | 14 | 22 |
| ºÏ¼Æ | 22 | 18 | 40 |
ÏÂÃæÊÇÄêÁäµÄ·Ö²¼±í£º
| Çø¼ä | [25£¬30£© | [30£¬35£© | [35£¬40£© | [40£¬45£© | [45£¬50£© |
| ÈËÊý | 28 | a | b |
¸½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬ÆäÖÐn=a+b+c+d£®
| P£¨K2¡Ýk0£© | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
·ÖÎö £¨¢ñ£©ÀûÓÃÆµÂÊÓëÆµÊýµÄ¹ØÏµÇó³öÑù±¾ÈÝÁ¿N¡¢¼ÆËã³öa¡¢bµÄÖµ£»
£¨¢ò£©Çó³öÄêÁäµÍÓÚ40ËêµÄÔ±¹¤Êý£¬ÀûÓ÷ֲã³éÑùÔÀíÇó³öÿ×é³éÈ¡µÄÈËÊý£»
£¨¢ó£©¸ù¾Ý±íÖÐÊý¾Ý¼ÆËãK2µÄ¹Û²âÖµ£¬²é±íµÃ³ö¸ÅÂʽáÂÛ£®
½â´ð ½â£º£¨¢ñ£©×ÜÈËÊý£º$N=\frac{28}{5¡Á0.02}=280$£¬a=28£¬
µÚ3×éµÄƵÂÊÊÇ£º1-5¡Á£¨0.02+0.02+0.06+0.02£©=0.4
ËùÒÔb=280¡Á0.4=112¡£¨4·Ö£©
£¨¢ò£©ÒòΪÄêÁäµÍÓÚ40ËêµÄÔ±¹¤ÔÚµÚ1£¬2£¬3×飬¹²ÓÐ28+28+112=168£¨ÈË£©£¬
ÀûÓ÷ֲã³éÑùÔÚ168ÈËÖгéÈ¡42ÈË£¬Ã¿×é³éÈ¡µÄÈËÊý·Ö±ðΪ£º
µÚ1×é³éÈ¡µÄÈËÊýΪ$28¡Á\frac{42}{168}=7$£¨ÈË£©£¬
µÚ2×é³éÈ¡µÄÈËÊýΪ$28¡Á\frac{42}{168}=7$£¨ÈË£©£¬
µÚ3×é³éÈ¡µÄÈËÊýΪ$112¡Á\frac{42}{168}=28$£¨ÈË£©£¬
ËùÒÔµÚ1£¬2£¬3×é·Ö±ð³é7ÈË¡¢7ÈË¡¢28ÈË£®¡£¨8·Ö£©
£¨¢ó£©¼ÙÉèH0£º¡°ÊÇ·ñϲ»¶¿´¹úѧÀàÊé¼®ºÍÐÔ±ðÎÞ¹ØÏµ¡±£¬¸ù¾Ý±íÖÐÊý¾Ý£¬
ÇóµÃK2µÄ¹Û²âÖµ$k=\frac{{40¡Á{{£¨14¡Á14-4¡Á8£©}^2}}}{22¡Á18¡Á22¡Á18}¡Ö6.8605£¾6.635$£¬
²é±íµÃP£¨K2¡Ý6.635£©=0.01£¬´Ó¶øÄÜÓÐ99%µÄ°ÑÎÕÈÏΪ¸Ãµ¥Î»Ô±¹¤ÊÇ·ñϲ»¶ÔĶÁ¹ú
ѧÀàÊé¼®ºÍÐÔ±ðÓйØÏµ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼Ö±·½Í¼Óë¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | $£¨\frac{{\sqrt{3}}}{6}£¬\frac{{\sqrt{3}}}{4}]$ | B£® | $£¨\frac{{\sqrt{3}}}{6}£¬\frac{{\sqrt{3}}}{4}£©$ | C£® | $£¨\frac{{\sqrt{3}}}{12}£¬\frac{{\sqrt{3}}}{4}£©$ | D£® | $£¨\frac{{\sqrt{3}}}{12}£¬\frac{{\sqrt{3}}}{4}]$ |
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |