题目内容
3.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=3,1+$\frac{tanA}{tanB}=\frac{2c}{b}$,则b+c的最大值为3$\sqrt{2}$.分析 由正弦定理,三角函数恒等变换的应用化简已知等式可得$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,结合sinC≠0,sinB≠0,可求cosA=$\frac{1}{2}$,由余弦定理可得:b+c=$\sqrt{9+3bc}$,利用基本不等式可求9≥bc,进而可求b+c的最大值.
解答 解:∵1+$\frac{tanA}{tanB}=\frac{2c}{b}$,可得:1+$\frac{sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∵C,B∈(0,π),sinC≠0,sinB≠0,
∴可得:cosA=$\frac{1}{2}$,
∵a=3,
∴由余弦定理可得:9=b2+c2-bc,
∴9=(b+c)2-3bc,可得:b+c=$\sqrt{9+3bc}$,
又∵9=b2+c2-bc≥2bc-bc=bc,当且仅当b=c时等号成立,
∴b+c=$\sqrt{9+3bc}$≤$\sqrt{9+9}$=3$\sqrt{2}$,当且仅当b=c时等号成立.
故b+c的最大值为3$\sqrt{2}$.
故答案为:3$\sqrt{2}$.
点评 本题主要考查了正弦定理,三角函数恒等变换的应用,余弦定理,基本不等式在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
14.对于使f(x)≤M成立的所有常数M中,我们把M的最小值叫做f(x)的上确界,若正数a,b∈R且a+b=1,则$-\frac{1}{2a}-\frac{2}{b}$的上确界为( )
| A. | $-\frac{9}{2}$ | B. | $\frac{9}{2}$ | C. | $\frac{1}{4}$ | D. | -4 |
11.设集合M={x|x2+3x+2>0},集合N={-2,-1,0,1,2},则M∩N=( )
| A. | {-2,-1} | B. | {0,1,2} | C. | {-1,0,1,2} | D. | {-2,-1,0,1,2} |
15.设集合A={x∈Z|x2-2x-3≤0},B={0,1},则∁AB=( )
| A. | {-3,-2,-1} | B. | {-1,2,3} | C. | {-1,0,1,2,3} | D. | {0,1} |
12.当x>0时,函数f(x)=(aex+b)(x-2)单调递增,且函数y=f(x-1)的图象关于直线x=1对称,则使得f(2-m)>0成立的m的取值范围是( )
| A. | {m|m<-2或m>2} | B. | {m|-2<m<2} | C. | {m|m<0或m>4} | D. | {m|0<m<4} |