题目内容

17.如图,直三棱柱ABC-A1B1C1中,AC=BC=$\frac{1}{2}$AA1=1,D是棱AA1的中点,DC1⊥BD.
(1)证明:DC1⊥BC;
(2)若∠ACB=90°,求点C到平面BDC1的距离.

分析 (1)证明DC1⊥面BCD,即可证明DC1⊥BC;
(2)过C作CE⊥BD,则CE⊥面BC1D,CE为点C到平面BDC1的距离,利用等面积求点C到平面BDC1的距离.

解答 (1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°
同理:∠A1DC1=45°,∴∠CDC1=90°
∴DC1⊥DC,DC1⊥BD
∵DC∩BD=D
∴DC1⊥面BCD
∵BC?面BCD
∴DC1⊥BC;
(2)解:∵DC1⊥面BCD,DC1?面BC1D
∴面BC1D⊥面BCD,
过C作CE⊥BD,则CE⊥面BC1D,CE为点C到平面BDC1的距离.
△BCD中,BC=1,CD=$\sqrt{2}$,BD=$\sqrt{3}$,BC⊥CD,S△BCD=$\frac{\sqrt{2}}{2}$,
∴$\frac{1}{2}×\sqrt{3}h$=$\frac{\sqrt{2}}{2}$,
∴h=$\frac{\sqrt{6}}{3}$.

点评 本题考查线面垂直的判定与性质,考查点到平面距离的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网