题目内容

8.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.
(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;
(2)设点A的极坐标为(2,$\frac{π}{3}$),点B在曲线C2上,求△OAB面积的最大值.

分析 (1)设P(x,y),利用相似得出M点坐标,根据|OM|•|OP|=16列方程化简即可;
(2)求出曲线C2的圆心和半径,得出B到OA的最大距离,即可得出最大面积.

解答 解:(1)曲线C1的直角坐标方程为:x=4,
设P(x,y),M(4,y0),则$\frac{x}{4}=\frac{y}{{y}_{0}}$,∴y0=$\frac{4y}{x}$,
∵|OM||OP|=16,
∴$\sqrt{{x}^{2}+{y}^{2}}$$\sqrt{16+{{y}_{0}}^{2}}$=16,
即(x2+y2)(1+$\frac{{y}^{2}}{{x}^{2}}$)=16,
∴x4+2x2y2+y4=16x2,即(x2+y22=16x2
两边开方得:x2+y2=4x,
整理得:(x-2)2+y2=4(x≠0),
∴点P的轨迹C2的直角坐标方程:(x-2)2+y2=4(x≠0).
(2)点A的直角坐标为A(1,$\sqrt{3}$),显然点A在曲线C2上,|OA|=2,
∴曲线C2的圆心(2,0)到弦OA的距离d=$\sqrt{4-1}$=$\sqrt{3}$,
∴△AOB的最大面积S=$\frac{1}{2}$|OA|•(2+$\sqrt{3}$)=2+$\sqrt{3}$.

点评 本题考查了极坐标方程与直角坐标方程的转化,轨迹方程的求解,直线与圆的位置关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网