题目内容
定义:,若函数,将其图象向左平移个单位长度后,所得到的图象关于轴对称,则的最小值是
A. B. C. D.
若函数在区间上单调递增,则实数的取值范围是 .
已知抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,若为边长是的等边三角形,则此抛物线方程为 .
(本小题满分12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
(1)求甲在局以内(含局)赢得比赛的概率;
(2)记为比赛决出胜负时的总局数,求的分布列和期望.
已知,, .
已知是虚数单位,若,则的虚部为
(本小题满分16分)设是公差为的等差数列,是公比为()的等比数列.记.
(1)求证:数列为等比数列;
(2)已知数列的前4项分别为4,10,19,34.
① 求数列和的通项公式;
② 是否存在元素均为正整数的集合,,…,(,),使得数列,,…,为等差数列?证明你的结论.
设集合,,则 .
若函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上,g(x)=f(x)-mx-2m有两个零点,则实数m的取值范围是( ).
A.0<m≤ B.0<m< C.<m≤1 D.<m<1