题目内容
已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的________条件.
必要不充分
已知函数f(x)=x3-2ax2-3x(a∈R),若函数f(x)的图像上点P(1,m)处的切线方程为3x-y+b=0,则m的值为( )
A.- B.-
C. D.
已知f(x)=xln x,g(x)=x3+ax2-x+2.
(1)如果函数g(x)的单调递减区间为,求函数g(x)的解析式;
(2)在(1)的条件下,求函数y=g(x)的图像在点P(-1,1)处的切线方程;
(3)若不等式2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
已知f(α)=,则f 的值为( )
A. B.-
C.- D.
已知函数f(x)=asin(πx+α)+bcos(πx+β),且f(4)=3,则f(2 013)的值为( )
A.-1 B.1
C.3 D.-3
设函数f(x)=
(1)求y=f(x)的最小正周期及单调递增区间;
(2)若函数y=g(x)与y=f(x)的图像关于直线x=2对称,求当x∈[0,1]时,函数y=g(x)的最大值.
某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos (x=1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为________℃.
已知角α,β的顶点在坐标原点,始边与x轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-,角α+β的终边与单位圆交点的纵坐标是,则cos α=________.
已知函数(R).
(1)求的最小正周期和最大值;
(2)若,其中是面积为的锐角的内角,且,求边和的长.