题目内容

(1)如图,平行四边形ABCD中,M、N分别为DC、BC的中点,已知
AM
=
c
AN
=
d
,试用
c
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
AC
=
b
若P,Q,S为线段BC的四等分点,试证:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)

(1)由
DM
=
1
2
AB
BN
=
1
2
AD

c
=
AD
+
DM
d
=
AB
+
BN

c
=
AD
+
1
2
AB
d
=
AB
+
1
2
AD

解得:
AB
=
4
3
d
-
2
3
c

AD
=
4
3
c
-
2
3
d
(7分)
(2)证明:
AP
=
3
4
AB
+
1
4
AC
AQ
=
1
2
AB
+
1
2
AC
AC
=
1
4
AB
+
3
4
AC

AP
+
AQ
+
AC
=
3
2
(
AB
+
AC
)

AP
+
AQ
+
AC
=
3
2
(
a
+
b
)
(14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网