题目内容

2.设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一个特征向量.
(1)求实数a的值;
(2)求矩阵M的特征值.

分析 (1)设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵M属于特征值λ的一个特征向量,列出方程组,能求出实数a的值.
(2)由$f(λ)=|\begin{array}{l}1-λ\;\;\;\;2\\ 3\;\;\;\;\;\;\;2-λ\;\;\end{array}|=(1-λ)(2-λ)-6=0$,能求出矩阵M的特征值.

解答 解:(1)设$[{\begin{array}{l}2\\ 3\end{array}}]$是矩阵M属于特征值λ的一个特征向量,
则$[{\begin{array}{l}a&2\\ 3&2\end{array}}]$$[{\begin{array}{l}2\\ 3\end{array}}]=λ$$[{\begin{array}{l}2\\ 3\end{array}}]$,故$\left\{\begin{array}{l}2a+6=2λ\\ 12=3λ\end{array}\right.$,
解得$\left\{\begin{array}{l}λ=4\\ a=1.\end{array}\right.$,
故实数a=1.…(5分)
(2)$f(λ)=|\begin{array}{l}1-λ\;\;\;\;2\\ 3\;\;\;\;\;\;\;2-λ\;\;\end{array}|=(1-λ)(2-λ)-6=0$,
解得矩阵M的特征值λ1=4,λ2=-1.…(10分)

点评 本题考查实数值的求法,考查矩阵的特征值的求法,考查矩阵的特征向量、特征值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目
8.共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
 租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2 2.4 2 1.9 1.7
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$称为相应于点(xi,yi)的残差(也叫随机误差);
  租用单车数量x(千辆) 2 3 4 5 8
 每天一辆车平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估计值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 残差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估计值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
残差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并通过比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网