题目内容

4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)的右焦点为F2,M是双曲线C在第一象限上一点,N与M关于原点对称,MF2交双曲线C于另一点P,NF2⊥PF2,|NF2|=|PF2|,则双曲线C的渐近线为(  )
A.y=±2xB.y=±4xC.y=±$\frac{\sqrt{6}}{2}$xD.y=±$\frac{\sqrt{10}}{2}$x

分析 设|NF2|=t,可得|PF2|=t,连接MF1,NF1,可得|MF1|=t,由双曲线的定义可得,|MF1|-|MF2|=2a,即有|MF2|=t-2a,再由勾股定理,可得t,再由|PF1|=t+2a,在直角三角形MPF1中,运用勾股定理,可得t,解方程可得a,b的关系,即可得到所求渐近线方程.

解答 解:设|NF2|=t,可得|PF2|=t,
连接MF1,NF1,可得|MF1|=t,
由双曲线的定义可得,|MF1|-|MF2|=2a,
即有|MF2|=t-2a,
由NF2⊥PF2,可得t2+(t-2a)2=4c2=4a2+4b2
解得t=a+$\sqrt{{a}^{2}+2{b}^{2}}$,
连接PF1,可得|PF1|-|PF2|=2a,
即有|PF1|=t+2a,在直角三角形MPF1中,可得
(t+2a)2=t2+(2t-2a)2
解得t=3a,
由a+$\sqrt{{a}^{2}+2{b}^{2}}$=3a,化为2b2=3a2
即为b=$\frac{\sqrt{6}}{2}$a,
可得渐近线方程为y=±$\frac{b}{a}$x,
即为y=±$\frac{\sqrt{6}}{2}$x.
故选:C.

点评 本题考查双曲线的渐近线方程的求法,注意运用双曲线的定义和勾股定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网