题目内容
(1)求证:直线AB1∥平面BC1D;
(2)求证:平面BC1D⊥平面ACC1A;
(3)求三棱锥C-BC1D的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(1)连接B1C交BC1于点O,连接OD,则点O为B1C的中点.可得DO为△AB1C中位线,A1B∥OD,结合线面平行的判定定理,得A1B∥平面BC1D;
(2)由AA1⊥底面ABC,得AA1⊥BD.正三角形ABC中,中线BD⊥AC,结合线面垂直的判定定理,得BD⊥平面ACC1A1,最后由面面垂直的判定定理,证出平面BC1D⊥平面ACC1A;
(3)利用等体积转换,即可求三棱锥C-BC1D的体积.
(2)由AA1⊥底面ABC,得AA1⊥BD.正三角形ABC中,中线BD⊥AC,结合线面垂直的判定定理,得BD⊥平面ACC1A1,最后由面面垂直的判定定理,证出平面BC1D⊥平面ACC1A;
(3)利用等体积转换,即可求三棱锥C-BC1D的体积.
解答:
(1)证明:连接B1C交BC1于点O,连接OD,则点O为B1C的中点.
∵D为AC中点,得DO为△AB1C中位线,
∴A1B∥OD.
∵OD?平面AB1C,A1B?平面AB1C,
∴直线AB1∥平面BC1D;
(2)证明:∵AA1⊥底面ABC,
∴AA1⊥BD,
∵底面ABC正三角形,D是AC的中点
∴BD⊥AC
∵AA1∩AC=A,∴BD⊥平面ACC1A1,
∵BD?平面BC1D,∴平面BC1D⊥平面ACC1A;
(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3
,
∴S△BCD=
×3×3
=
,
∴VC-BC1D=VC1-BCD=
•
•6=9
.
∵D为AC中点,得DO为△AB1C中位线,
∴A1B∥OD.
∵OD?平面AB1C,A1B?平面AB1C,
∴直线AB1∥平面BC1D;
(2)证明:∵AA1⊥底面ABC,
∴AA1⊥BD,
∵底面ABC正三角形,D是AC的中点
∴BD⊥AC
∵AA1∩AC=A,∴BD⊥平面ACC1A1,
∵BD?平面BC1D,∴平面BC1D⊥平面ACC1A;
(3)解:由(2)知,△ABC中,BD⊥AC,BD=BCsin60°=3
| 3 |
∴S△BCD=
| 1 |
| 2 |
| 3 |
9
| ||
| 2 |
∴VC-BC1D=VC1-BCD=
| 1 |
| 3 |
9
| ||
| 2 |
| 3 |
点评:本题给出直三棱柱,求证线面平行、面面垂直并探索三棱锥的体积,着重考查了空间线面平行、线面垂直的判定与性质,考查了锥体体积公式的应用,属于中档题.
练习册系列答案
相关题目
已知平面向量
,
满足|
|=3,|
|=2,
与
的夹角为120°,若(
+m
)⊥
,则实数m的值为( )
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| A、1 | ||
B、
| ||
| C、2 | ||
| D、3 |
数列{an}中,已知对任意n∈N*,a1+a2+…+an=3n-1,则a12+a22+…+an2=( )
A、
| ||
B、
| ||
C、
| ||
D、
|