题目内容
8.已知a>0,且不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50对于任意实数x∈R,t>0恒成立,则a的取值范围是(0,+∞).分析 把已知不等式变形为关于x的一元二次不等式,由不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50对于任意实数x∈R恒成立,可得一元二次不等式的判别式小于等于0,整理得$(t+a)^{2}+4(t+a)+\frac{4(at+t+1)}{{t}^{2}}≥0$,在a>0时,该式对任意的t>0恒成立,从而得到a的取值范围.
解答 解:由(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50,得:
$2{x}^{2}+2(t+a-2)x+{t}^{2}+\frac{2}{{t}^{2}}+2at+\frac{2a+4}{t}$+a2-44≥0,
∵不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50对于任意实数x∈R恒成立,
∴△=$4(t+a-2)^{2}-8({t}^{2}+\frac{2}{{t}^{2}}+2at+\frac{2a+4}{t}+{a}^{2}-44)≤0$,
整理得:$(t+a)^{2}+4(t+a)+\frac{4(at+t+1)}{{t}^{2}}≥0$,
在a>0时,该式对任意的t>0恒成立,
∴a的取值范围是(0,+∞).
故答案为:(0,+∞).
点评 本题考查恒成立问题,考查了数学转化思想方法,是中档题.
练习册系列答案
相关题目